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OPTIMIZATION OF CHEMICAL VAPOR INFILTRATION WITH SIMULTANEOUS 
POWDER FORMATION* 

A. DITKOWSKI+, D. GOTTLIEB*, AND B.W. SHELDON^ 

Abstract. A key difficulty in isothermal, isobaric chemical vapor infiltration is the long processing 

times that are typically required. With this in mind, it is important to minimize infiltration times. This 

optimization problem is addressed here, using a relatively simple model for dilute gases. The results provide 

useful asymptotic expressions for the minimum time and corresponding conditions. These approximations 

are quantitatively accurate for most cases of interest, where relatively uniform infiltration is required. They 
also provide useful quantitative insight in cases where less uniformity is required. The effects of homogeneous 
nucleation were also investigated. This does not affect the governing equations for infiltration of a porous 
body, however, powder formation can restrict the range of permissible infiltration conditions. This was 

analyzed for the case of carbon infiltration from methane. 
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1. Introduction. A variety of materials are produced by infiltration processes. In these techniques a 

fluid phase (i.e., a gas or a liquid) is transported into a porous structure, where it then reacts to form a solid 

product. These methods are particularly important for producing composite materials, where the initial 

porous perform is composed of the reinforcement phase (i.e., fibers, whiskers, or particles) and infiltration 

produces the matrix [1], [2]. A detailed assessment of the relevant reaction and mass transport rates during 
infiltration requires mathematical modeling, using a minimum of two coupled partial differential equations 
which describe changes in the reactant concentration and the solid structure as a function of both position 
and time. This type of modeling can also be extended to analyze the optimization and control of infiltration 
processes. 

The research presented here specifically considers optimization for a set of two equations which describe 

isothermal, isobaric chemical vapor infiltration (CVI). In this process a vapor-phase precursor is transported 

into the porous preform, and a combination of gas and surface reactions leads to the deposition of the solid 

matrix phase. During infiltration the formation of the solid product phase eventually closes off porosity at 
the external surface of the body, blocking the flow of reactants and effectively ending the process. This is a 

key feature of most infiltration processes. Isothermal, isobaric CVI often requires extremely long times, so 
it is generally important to minimize the total processing times. 

This paper considers the problem of determining the optimal pressure and temperature which correspond 
to the minimum infiltration time. From a practical perspective, the nature of the porous preform is often 

predetermined by the intended application (e.g., the physical dimensions and the fiber size are invariants). 

Thus, the process can only be controlled with process variables: temperature, pressure, and gas composition. 
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Note that the pressure and temperature determine several different physical quantities in the model, such that 

the general understanding of the optimum conditions is not immediately obvious from the basic formulation. 

Several previous efforts have addressed minimal infiltration times [7], [8], [9], [10], [11]. The work 

described here differs from these previous efforts in several ways. First, the asymptotic solutions obtained 

here make it possible to estimate the optimal conditions without conducting detailed numerical calculations. 

This paper uses a relatively simple mathematical model which is based on the diffusion and reaction of 
a single, dilute precursor. However, the numerical results which are used to verify and understand the 

limitations of the asymptotic results are generally similar to previously reported numerical results. Also, the 

results presented here are based on carbon CVI from methane, in comparison with previous efforts on CVI 

optimization which have emphasized SiC CVI from methyltrichlorosilane. The use of different chemistry does 

not change the general conclusions obtained here, however, the actual values do correspond to a somewhat 

different process. This paper also considers an additional constraint due to homogeneous nucleation (powder 
formation), which has not been treated in previous efforts. Powder formation can be significant in many 

CVI processes (including carbon formation), and this effect can alter the optimal temperature and pressure 
under certain conditions. 

This paper is organized as follows: Section 2 presents the basic set of two partial differential equa- 
tions used to model isothermal, isobaric CVI (including initial and boundary conditions). A definition for 

a successful process and a discussion on the optimization problem is given. In Section 3 an analysis of the 

optimization problem is given. The analysis performed is based on asymptotic expansions as well as compu- 
tations. The results of the analysis are optimal working pressure and temperature. In Section 4 the effects 

of powder formation in the analysis are included in the analysis; here too the pressure -and temperature to 

minimize the final time are provided. In Section 5 a discussion of the significance of these results is presented. 

2. Formulation. A mathematical description of infiltration requires one or more' partial differential 
equations which describe the evolution of the matrix (i.e., the solid phase), and one additional partial 
differential equation for each chemical species in the fluid phase. For a simple pore structure, the continuity 
equation for species i is 

(2.1) ^p-+V-Ni = JTvirRr 
r 

where t is time, e is the void fraction of the media, d nd N, are the concentration and the flux of species i, 

nr is the number of the gaseous species, ViV is the stoichiometric coefficients for the ith gaseous species in 

the rth reaction, and Rr represents the volumetric reaction rate of reaction r. 
The basic partial differential equation (s) which describe reaction and mass-transport in porous media 

(i.e., the fluid phase) are well-established [3], [5]. For example, the Dusty-Gas model [6] is typically used to 
describe multicomponent diffusion and convection in a porous body. 

The simplest formulation for the fluid phase is obtained by considering one reacting species. For highly 

diluted reactant systems, the Dusty-Gas model can be simplified to give the following approximate expression 

for the flux in one spatial dimension (Z): 

(2.3) N = -D§ 



where C is the concentration of the diluted species and Z is the distance into the preform. It is convenient to 

write C in terms of the temperature T, the total pressure, P, and the mole fraction of the reacting species, 
X: 

(2.4) C = —. 

For a diffusion-limited process, with one dilute reactant species in one spatial dimension, Eq. (2.1) 

becomes (using Eq. (2.3) and Eq. (2.4) ): 

(25) 9{£XP) -   d 
(2-5) ~~dT~ - dZ DdxP 

dz 
uSv(e) 

VM 

where VM is the molar volume of the solid product , u is the rate at which the solid product grows (vol- 

ume/area/time) and Sv(e) is the gas/solid surface area per unit volume of the porous solid. The last term in 

Eq. (2.5) describes the rate at which the gas-phase precursor is consumed (or created) by chemical reactions 
inside of the pores, with the assumption that there are no homogeneous gas-phase reactions. 

Describing the evolution of the matrix phase is equivalent to considering the change in the void fraction, 

e (i.e., the volume fraction of gas inside of the porous solid). The evolution of e is given by: 

(2.6) ft = -uSv(s). 

The boundary conditions most often used for CVI models are to fix the concentration at the outer surface 

of the preform, and to assume that diffusion occurs in from two opposite sides, such that there is no net flux 

in the middle of the preform (i.e., at Z = L, where L is the half-thickness of the preform): 

(2.7) X(0,t)=Xo 

(2.8) X,(l,t)=0 

where z = Z/L. 

The initial condition is given by: 

(2.9) e{z,0) = e0(z). 

A specific CVI model requires expressions for u, Sv, and D. Our objective in this work is to use relatively 

simple formulations for each, as a basis for assessing optimization during isothermal, isobaric CVI. As an 

example, consider the formation of carbon matrix composites from a mixture of CH4 in an H2 carrier gas, 

where the following net reaction occurs: 

(2.10) CH4 (g) ^ C(s) + 2 H2(g). 

The form of Eq. (2.5) is based on the assumption that the CH4 concentration, C, is dilute (i.e., the reactant 
concentration is much smaller than the carrier gas concentration). If the carbon growth rate is proportional 

to the precursor concentration, then: 



(2-11) u = *l£ v       ; RT 

where A; is the reaction rate constant (with units j^) and R is the gas constant. The standard Arrhenius 
expression for k is: 

(2.12) k = Akexp(-Q/T) 

where Q is the activation energy divided by the R and Ak is a pre-exponential factor. 

The preforms used for CVI typically have a complex porous structure. However, a cylindrical pore is 

often used to formulate simple models. This leads to the following expression for Sv: 

(2-13) Sv(e) - ^^ 

where ro is the initial pore radius and e0 is the initial concentration of e. 

The effective diffusivity of the dilute species, D, can be expressed as 

(2.14) D=£-DM[l + Nk(e)}-1 

M = —P— 

where DM is the binary diffusion coefficient for the reactant species in the carrier gas (e.g., CH4 in H2), AM 

is a species dependent constant, Nk is the ratio of DM and the Knudsen diffusion coefficient, and 6 is the 

tortuosity factor. For randomly distributed cylindrical pores, 9 is estimated to be 3, and Nk is given by: 

N   -  ADT 

where 

(2-15) AD-      D%p 

D°K is the Knudsen diffusion coefficient for the initial pore size, at some reference temperature T* 

Substituting Eqs. (2.11) and (2.13) into Eqs. (2.6) and (2.5) gives the following forms: 

(2-16) ______ __c(M) 

d  (t,_,^ ^dc(z,t)\ _   2 (2.17) — f/fo(z,t))_-lJ-- ) = a^(z,t)c(z,t) 



TABLE 2.1 

Values of the constants. 

Aa 

Aß 

m = yjt{t = 0) 

Q 

AD: 10Mm diam fibers 

80Mm diam fibers 

200/im diam fibers 

6.35 (10)21 K3/2 atm-1 

3.64(10)18K3/2atm-1! 

0.85 
55000 K [17] 
1.54(10)-5atm/K 

1.93(10)-6atm/K 

7.7(10)-7atm/K 

where 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

m = Pij3 

3(Pr? + ADT) 

pe(-Q/T) 
a2, - Aa 

ß = Aß 

Aa 

T3/2 

T 
2AkJT0L

2 

Aß = 

VMTQAMR 
1AkJe^ 

r0R 

Where ro is the initial pore radius and XQ denotes the fraction of the active gas in the inlet (at z = 0). Note 

that a2 is dimensionless and that ß has units of inverse time. The time derivative in Eq. (2.5) has been 

removed in Eq. (2.17), which is permissible because a pseudo-steady state C profile is achieved in a short 
amount of time (i.e., compared to the time scale over which e changes) [4]. Transforming e to T) simplifies 
equation (2.16). Note that 77 is proportional to Sv, so r) can be viewed as a dimensionless surface area per 
volume. Values of the constants in Eqs.(2.18)-(2.23) are given in Table 2.1, for the case of carbon CVI from 

methane, (see Eq.(2.10)), with a preform thickness of 2L = 3mm. 

The system (2.16), (2.17) is subject to the initial condition 

(2.24) 77(2,0) =Vo(z) 

This paper treats only the case of a uniform initial condition, r]o(z) = rio- The boundary conditions are (see 

(2.7), (2.8)): 

(2.25) 

(2.26) 

c(0,t) = 1 
dc 
dz 

= 0. 

With this model it can be shown that: 

• The value of the void function in the inlet z 

(2.27) 

0, is 

T]{0, t)-Vo 



• There exists a critical time tc = ^-. At this time, the void function vanishes at z = 0, the inlet 

closes completely, and the process ends. 
• The void function t] and the concentration function c are bounded from above and below.   0 < 

c(z,t) < 1, 77(0,*) < n{z,t) < r)o for t < tc = 22o_ 
• For any time t < tc, the void function f](z,t) is monotonically increasing function of the spatial 

variable z. 
• The concentration function c(z, t) is monotonically decreasing function of the spatial variable z. 

The literature on diffusion and reaction in porous media typically uses a dimensionless ratio of the diffu- 

sion and reaction rates, sometimes known as the Thiele modulus. This parameter varies during infiltration, 

because of changes in the microstructure with time. Thus, previous CVI modeling has used an initial Thiele 

modulus as an approximate assessment of the relative infiltration kinetics [4], [7], [8]. In terms of the for- 

mulation specified here, the initial Thiele modulus is equal to a2r)(z,0)/f(r){z,0)). In general, when a2 is 
small, diffusion is fast and infiltration is relatively uniform. When a2 is large, the deposition reaction is fast 

and infiltration is highly non-uniform. 
The parameters a2 and ß depend on the three key process variables: T, P, and X0. Process optimiza- 

tion during CVI is achieved by setting these variables to optimal values. In isothermal, isobaric CVI the 

infiltration kinetics are controlled by diffusion and the deposition reaction. To achieve relatively uniform 

infiltration, diffusion must be fast relative to the deposition rate. This is typically accomplished by choos- 
ing processing conditions that result in a slow deposition rate, which usually leads to long infiltration times. 

Thus, the primary basis for process optimization is to obtain the desired amount of infiltration in the shortest 

possible time. 

A general definition of a successful process includes two considerations: 
1. At the end of the process ( at time t = tf) the void function r){z,tf) should be a small fraction of 

its initial value, either in the whole interval or in a certain portion of the interval 0 < z < z\. 

2. For the process to yield good results it is important that the void function is uniformly small along 

the z axis. 
Mathematically, we express these considerations by stating that a process is successful if for some time tf 

(2.28) »?(zi,*/)<fci»7o 

(2.29) T){0,tf) = k0T)o 

fc0 << 1, fco < ki- Equation (2.28) states that the final values of the void function rj should be small in 
the interval between the inlet and the point z\ (note that r)(z,t) is monotonically increasing function of the 

spatial coordinate z). In most problems of interest z\ - 1. Conditions (2.28) and (2.29) state that the void 

function should be uniformly small. Also, from (2.27), (2.29), the final time, tf, is given by: 

(2.30) */ = (l-*ö)»|o^. 

Note that the time for the process to end decreases as a function of ß (itself a function of the temperature 

and pressure, given in (2.21)). 
The goal of the analysis in the following sections is to find the temperature and pressure that minimize 

the final time tf for achieving a successful process. 



3. Analysis of the Optimization Problem. Evaluation of Eq. (2.27) requires an approximation for 

rj(zi,tf) in terms of the pressure and temperature. There are two ways to obtain it: either by asymptotic 

expansions or by direct numerical solution of the system (2.16),(2.17). 

3.1. Asymptotic Expansions. The set of equations (2.16), (2.17) is nonlinear and explicit solutions 

can not be obtained. However some analytical approximation may be derived by noting that in most of the 

problems of interest a2 is small, and therefore it makes sense to expand the solutions in power of a2. The 

details of obtaining this expansion to order a2 will be given elsewhere [16]. For small a2 the final result is: 

(3.1) c(z,t)~l-a2(z-z2/2)^ 

(3.2) r)(z,t)~E(t)+Za2(z-z2/2) [logU*))+  P   (E~ w. 
Where 

(3.3) E(t) = 
/3 

It can be shown that the error in the expansion is proportional to ( f-J , where fco is the ratio between the 

final void function at the inlet and its initial value, as defined in (2.29). In the next subsection the numerical 

results and the asymptotic expansions are compared, to demonstrate the validity of the expansions in the 

range of relevant a2. 

The asymptotic expansion (3.2) is used to get an explicit form for the uniformity constraint (2.28) in 

terms of the temperature T and the pressure P. Substituting (3.2) into (2.28) gives: 

(3.4) k0r)o + 3a2(2i - 4m hü+p.oGo-1)] < Mo 

Substituting a2 from (2.20) and rearranging gives: 

(3.5) J(P,T)<(ki-fcb)jjo. 

where 

(3.6) APT) -3A    P e-Q'T{Zl - zf/2) hü+^oGo-1)] 
Rearranging terms shows that uniformity is assured if 

(3.7) p<^T3/2eQ/T_|0r) 

D2                            B2 

where 

(3.8) 
f]o(h - fco) 

*°     AaZ{z, - z2/2) 

(3.9) 
Vo   fco 

(3.10) B2 =k*tf- 

These results can now be used to approximate the temperature and pressure that minimize the infiltration 

time. Recall (see (2.30)) that the final time tf is inversely proportional to ß given in (2.21). The final time 

tf is therefore minimized if the function 



(3.11) F(P,T)^^e~^T 

is maximized under the uniformity constraint (2.29). Inspection of (3.11) shows that in order to maximize ß 

we have to take the equality sign in (3.7). Substituting this into (3.11) , it is easily verified that the following 

function must be maximized: 

(3.12) G(T) = |V/s - |^e-«/T 

This indicates that the final time tf to achieve a successful process is minimized by choosing temperature 

and pressure satisfying 

BxQ (3.13) T3/2eQ/T = 

B0 

(3.14) P=|^(Q-T). 

Moreover the minimal final time ffm is given by 

(3,16) r^-ty^-^Biih 
Where the temperature T is given by (3.13). 

The explicit formulas (3.13)-(3.15) lead to the following observations: 
1. The minimum final time, tfin, decreases as AD decreases. (For example, as the molecular diffusion 

becomes dominant.) 
2. tfin decreases as ki increases.   This reflects the fact that increasing fci relaxes the uniformity 

condition. 

3. As z\ increases toward z\ = 1, the minimum final time t™m increases. 

3.2. Computational Results. In the previous subsection the asymptotic expansion of r\ was used to 

define a functional J(P,T) such that each pair P, T that satisfies J{P,T) < (fci - fco) Vo leads to a solution 
that satisfies the conditions for a successful process, (2.28), (2.29). The optimal P and T was then obtained 
based on the final time. This result is approximately correct since the asymptotic expansion was used to 
approximate condition (2.28). This section uses numerical solutions of (2.16), (2.17) to create a 'numerical 
J functional', (i.e., a functional relation between P and T that ensures a successful process). 

Two algorithms were used to solve this problem: one based on a finite difference approximation and one 

on spectral methods. These are described in the Appendix. The schemes were run with fco = 0.1, z\ — 1 and 
fci = 0.15 or 0.7. Note that fci = .15 corresponds to relatively uniform infiltration while fci = .7 is relatively 

non-uniform. Although most applications require relatively uniform infiltration (i.e., lower fci), there are 

some cases where a non-uniform profile may be desirable. Two reasons for a higher fci are that it enables 

faster infiltration times, and it produces materials with lower density. For example, both of these attributes 

are desirable during the formation of thin carbon-carbon composites for bipolar plates in proton exchange 

membrane (PEM) fuel cells [18]. 
Three values were taken for AD, 1.54 (lO)"5, 1.93 (10)~6 and 7.7(10)-7 (see Table 2.1). Plots of the 

numerical and the asymptotic J curves are presented in Figure 3.1, plots of tf vs. P are presented in 

Figure 3.2. 
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FIG. 3.1. J-Curves obtained both numerically (solid lines) and by asymptotic analysis (dotted lines). Conditions on or 

below these lines will satisfy the uniformity condition (Eq. (3.35)). Conditions above this line do not satisfy the uniformity 

condition. All cases here correspond to Xa = 0.1, with: (a) k\ = 0.15, 10/mi diameter fibers; (b) fci = 0.15, 200/^m diameter 

fibers; (c) kj = 0.7, lO^m diameter fibers; (d) k\ = 0.7, 200/xm diameter fibers. 
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FIG. 3.2. Times which correspond to conditions on the J-curves in Figure 3.1, with values obtained both numerically 

(solid lines) and by asymptotic analysis (dotted lines). The filled circles show the minimal time, (a) k\ = 0.15, 10/xm diameter 

fibers; (b) k\ — 0.15, 200/xm diameter fibers; (c) k\ = 0.7, 10/xm diameter fibers; (d) k\ = 0.7, 200/itn diameter fibers. 

The process is very sensitive to changes in the temperature T, as can be seen, for example, by comparing 
the results for P = .latm,T = 1387K, vs. P = .latm, T = 1448K (for fex = 0.7 and AD = 1.54(lO)-5). 

Increasing temperature by 61 degrees, (~ 4%), decreases the final time from 160.3min to 31.4mjn, i.e., by a 
factor of 5 and produces an infiltration profile which is much less uniform. This occurs because of the strong 

temperature dependence of the deposition reaction. As the fibers size increases tf decreases slightly and the 

minimal time occurs at lower pressures. 

When the uniformity requirement dictates that k\ = .15 in (2.28), the condition J(P,T) — (hi — ko)r)o 

yields a P and T pair such that a2 ~ .01. In this case, the asymptotic expansions agree well with the 

numerical results. The predicted temperature that assures uniformity differs by only few degrees from the 

one obtained numerically, and tf differs by less than 10%. When fci was increased to 0.7, The large value of 

a2, (~ 0.1) leads to more inaccuracy in tf, (See Table 3.1). However, the optimal temperatures predicted 

by the asymptotic result is still accurate within 10%. 



TABLE 3.1 

tj for the optimal P and T. 

Numerics Asymptotics 

AD h P [atm] T[K] */[H] P [atm] T[K] tf[E] 

1.54 (10)-5 0.15 6.605 1201.65 16.03 7.694 1195.06 17.62 

1.93 (10)-6 0.15 0.830 1258.48 15.27 0.962 1251.37 16.80 

7.7 (10)-7 0.15 0.334 1389.75 14.93 0.373 1282.43 16.42 

1.54 (10)-5 0.7 3.185 1338.99 0.3934 7.694 1265.75 1.428 

1.93 (10)-6 0.7 0.375 1492.76 0.3727 0.962 1405.28 1.357 

7.7 (IQ)"7 0.7 0.155 1573.00 0.3632 0.373 1478.51 1.324 

In all cases, the asymptotic results agree qualitatively with the numerical results. The curves obtained 

numerically were almost parallel to the asymptotic, and the points of minima are almost in the same place. 

The asymptotic results are conservative, they always overestimated the final time, and gave more restrictive 
conditions on P and T for uniformity, i.e., P and T obtained by the asymptotic analysis never predict a 

successful process if it does not exist. However, since P and T obtained by the asymptotic analysis may be 

much different from the optimal ones (obtained by the numerical analysis), tf may be much larger then the 
minimal value (See Table 3.1). 

4. Homogeneous Nucleation. CVI processes can be limited by homogeneous nucleation (i.e., powder 

formation) in the gas phase. This effect has not been treated in previous CVI models because it generally 

occurs outside of the solid preform. However, powder formation can impose serious limitations on CVI 

operating conditions during the formation of carbon and oxide matrices. Thus, this phenomena imposes a 

constraint on the allowable CVI operating conditions. Nucleation kinetics are typically described with: 

(4.1) I = ZTJ* A*{X0PIBT)ex.p{-&g* lkBT) 

where I is the steady-state nucleation rate, A* is the area of a critical cluster, J* is the flux at which 

atoms are added to a critical cluster, Ag* is the free energy barrier to forming a critical cluster, kß is 
Boltzmann's constant, and Zj is the so-called Zeldovich factor, see [12]. A rigorous model requires that Zj 

be evaluated numerically, however, using standard approximations for Zi, the pre-exponential terms in (4.1) 

can be combined to give: 

(4.2) I S* (X0P/i?r)22(7/fcßT)1/2Afc exp(-QfRT) exp(-Ag*/kT) 

where 7 is the surface free energy of the cluster, and the constants Ak and Q describe the reaction rate 
constant (see (2.12)). In practice, the permissible value of / depends on the reactor configuration, as well as 

its actual value. For the current analysis, we assume that powder formation limits CVI when the nucleation 

rate exceeds some allowable level, Ium- With this in mind, Eq. (4.1) can be revised to yield: 
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FIG. 4.1. Effect of homogeneous nucleation for k\ =0.7, Xo =0.01, lOjum diameter fibers, (a) The numerically obtained 

J-Curve (uniformity constraint, Eq. (3.5)) and the I-curve (nucleation limit, Eq. (4-3) with Aum = 2.0 1021). (b) Limiting 

time as a function of pressure. The left part of the curve is determined by the numerically obtained J-curve and the right side 
is determined by the I-curve, with the minimal time shown by the filled circle. The dotted line corresponds to the approximate 

J-curve which was determined with asymptotics. 

(4.3) Aum = Ilimk)i2/Aky = (X0P)2/f2-*exp{-AI/T
n 

where the two exponential terms in Eq. (4.2) have been combined to give one term with two empirical 

constants, Ai and m. Since Ag* can have a relatively complex T dependence, this empirical approach 

was adopted to provide a relatively simple expression. This form was applied to the results of Loll et 

al., who report threshold conditions for the onset of significant nucleation (i.e., Xo vs. T at P = latm) 

[13], [14]. A good fit to their experimental data was obtained with m = 1.5, Ai = 750,000 K™, and 

Aum = 3.3(10)-17 atm2/K25. In general, the value of Aum is somewhat arbitrary, since it reflects a 

threshold for a given reactor. By varying Anm, it is possible to assess different tolerance levels for powder 

formation. For example, recent carbon CVI experiments at Oak Ridge National Laboratory tolerate higher 

powder formation levels than those described by Loll et al. with a threshold value that corresponds to 

^iro = 2.0(10)-21atm2/K2-5[15]. 

The effect of adding the powder formation constraint can be seen from Figure 4.1, where the J-curves 

are defined by Eq. (4.2). As seen in Figure 4.1a, the new constraint limits the pressures and temperatures 

to values which are below both the / and the J-curves. For a given pressure, the minimal tf corresponds 

to a temperature on either the I or J-curve (whichever is lower). Thus if the minimal tf found in Section 3 

(i.e., when P and T are on the J-curves) to the left of the /-curve, then the additional constraint does not 

change the previous results. If, on the other hand, this point is on the right of the /-curve then, the minimal 

tf occurs at the intersection between the I and J-curves. This point can be clearly seen as a cusp in the tf 

vs. P in the right plot. 

A complete assessment of X0 effects requires solutions with the full Dusty-Gas model, because large 

values of XQ violate the assumption of a dilute reactant gas. However, considering only values up to Xo = 0.1 

provides useful insight into optimizing dilute systems. Without the homogeneous nucleation constraint (i.e., 

as Aum -> oo), the minimal time is inversely proportional to X0, and the optimal pressure and temperature 

do not vary with Xo (see Section 3). However, homogeneous nucleation limits the operating conditions when 
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FIG. 4.2. Effect ofXo with 10/xm diameter fibers: (a) optimal pressures; (b) optimal temperatures; (c) minimum infiltration 

times and with 200pm diameter fibers: (d) optimal pressures; (e) optimal temperatures; (}) minimum infiltration times. 

Aum is low enough, as illustrated in Fig 3. The effect of this limitation on the optimal conditions and on 
the minimal time are shown in Figs. 4 and 5. These results lead to the following conclusions: 

1. As in Section 3, the asymptotic results are in good agreement with the numerical results for fci = .15, 

where a2 ~ .01, and much less accurate in the case hi = .7 where a2 ~ .1. In both cases, however, 

the asymptotic results agree qualitatively with the numerical results. 
2. Notwithstanding the dilute reactant gas restriction, tf are monotonically decreasing functions of 

X0, thus it is advisable to work in the 'highest' X0 possible. However since the optimal P is also 

a monotonically decreasing functions of XQ, this value of X0 is limited by the lowest operational 
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FIG. 4.3. Effect of Alim on tf, with k\ = 0.15: (a) lOfrai diameter fibers and Xo = 0.1; (b) 10^m diameter fibers with 

Xo — 0.02; (c) Wfira diameter fibers with XQ = 0.1. All values are based on numerical results. 

FIG. 4.4. Effect of A\-ml on the optimal pressure (a) and temperature (b), for the same cases plotted in Fig. 5. 

pressure.  For example for working pressure of about 0.01atm; the maximum allowable Xo is only 

0.05, for 200Mm diameter fibers (AD = 7.7(10)~7 atmK"1). 
3. For a given X0, as the fiber diameter increases, P and tf decrease and T increases. But unlike 

Section 3, the differences here are significant. This occurs because the homogeneous nucleation 
condition forces us to work in a region where the dependence on AD is much stronger. 

4. The homogeneous nucleation constraint causes the optimal temperature and pressure to vary with 

X0. 

As the value of Aum increases, the effects of homogeneous nucleation are less severe. This can be seen 

in Fig. 6, which shows the effects of varying 7;,m. Note that the minimum infiltration time is dramatically 

increased when there is a significant limitation imposed by homogeneous nucleation. In general, the process 
must be operated at lower pressures to avoid powder formation. Some increase in the corresponding optimal 
temperature accompanies this decrease in pressure. The slope discontinuities in Fig. 6 correspond to the 

conditions where the homogeneous nucleation constraint no longer has an effect, (i.e., the optimal conditions 

are determined solely by the J curve). 
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5. Conclusions. Minimizing infiltration times for isothermal, isobaric CVI is important because pro- 

cessing times are typically very long. The work presented here provides a detailed assessment of the pressure 

and temperature which will minimize the total required time, based on a simplified model for a single, dilute 

reactant species. This formulation makes it possible to understand the basic physics of the problem in terms 

of a relatively small number of lumped parameters. The basic objective of this optimization problem is to 

obtain a density profile with a prescribed amount of uniformity, in the shortest possible time (Section 3). 

The asymptotic results are particularly useful, because they make it possible to determine optimal conditions 

without doing numerical calculations (under conditions where a2 is small enough). Based on comparisons 

with the numerical results, the asymptotic forms are also qualitatively accurate when a2 is larger. Thus, 

the asymptotic results provide a clear understanding of how the optimal conditions are related to the key 

parameters for the problem. 

The effects of homogeneous nucleation were also analyzed, as an additional constraint on the basic 

optimization problem. This issue has not been considered in previous work on CVI modeling, however, 
it can limit operating conditions in systems were powder formation is significant (e.g., the formation of 

carbon matrix composites). The results obtained here provide a quantitative assessment of the conditions 
where homogeneous nucleation imposes limitations on infiltration conditions. When these limitations occur, 

powder formation also increases the minimum infiltration time. 

6. Appendix. To gain confidence in our computations, two completely different numerical methods 

were used: the pseudospectral method and a finite difference method. 

• In the pseudospectral Chebyshev method the grid points is chosen to be 

(6.1) ., = i±=*S)       0<,'<N 

where N is the total number of grid points and was 10 for most of the runnings. 
The spectral differentiation matrix takes the value of a given function at the g rid points Zj and 

yields the values of the derivative of the interpolation polynomial at these points.  The points Zj 

are the nodes of the Gauss Lobatto Chebyshev quadrature formula.   The matrix can be written 

explicitly: 

U3*     ~      2 c* sin jfr (.?+*) sin ^(-j+fc)      ■> T K > 

(6-2) D„      =     -fsinfe 3^,N, 

ADO    =    -DNN — —e^ 

We apply the matrix Djk twice, once for the vector c taking into account the boundary condition 

c(0, t) — 1 and then to f{rf) cz and taking into account that cz (1, t) = 0. This yields a linear system 

for the values of c(zj,t). 

In the next stage we update r\ by the standard third order Runge-Kutta scheme. 

• A second-order finite-difference scheme using the equidistance grid 

(6.3) Zj = L=jh       0<j<N . 
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The differentiation matrix can be written explicitly: 

Al       =    -£(/(*i-Ä/2) + /(zi+ft/2)) 

Dl 2 =      faf{Z!+h/2) 

Djj-i     =    ^f(zj-h/2) 

Djj       =    -^{f(zj-h/2) + f{zjh/2)) 

Djj+i     =    ±f(Zj + h/2) 

i = i 

j = 2...N-l 

DNN-i    =    £/(l-/»/2) 
ÖNJV      =    -£(f(l-h/2) + a2n) 

f in the mid-points was interpolated. In each step we solve the system 

£>c = 

/ -&f{*i-h/2) \ 

0 

In the next stage we use c to update n by the standard fourth order Runge-Kutta scheme. Since 

this scheme is less accurate we used 80 grid points. 
The results of both schemes were compared and the differences in r](z,tf) were less then 10~6. 
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